Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation
نویسندگان
چکیده
Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.
منابع مشابه
QSPR Analysis with Curvilinear Regression Modeling and Topological Indices
Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملQuantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds
The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...
متن کاملYoctosecond Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti–Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm
Yoctosecond Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under synchrotron radiations using Genetic Function Approximation (GFA) algorithm studies are suggested for the prediction of solubility of anti–cancer Nano drugs in aqueous solutions in yoctosecond [1-16]. Ab initio and density functional theories were used to calculate some ...
متن کامل